

acero para trabajo en caliente

desde 1941

SERVICIO INDUSTRIAL, S.A. DE C.V.

Color de distinción azul oscuro amarillo

CARACTERÍSTICAS

El acero SISA H13 provee un buen balance de tenacidad, alta resistencia a la formación de grietas causadas por el choque térmico y resistencia al revenido, junto con resistencia al desgaste moderada.

De temple al aire, es utilizado en la mayoría de las aplicaciones a durezas de 44-52 HRC.

Las temperaturas nominales de revenido del acero SISA H13 son bastante altas (>540°C - 1000°F), lo cual permite que mantenga su dureza de temple y su resistencia al ser utilizado a temperaturas elevadas.

Las herramientas fabricadas con el acero SISA H13 pueden ser usadas a temperaturas de hasta aprox. 540°C (1000°F) con exposiciones breves de hasta 595°C (1100°F), siendo ideal para dados de forja, herramental para extruído en caliente y moldes de fundición a presión.

APLICACIONES TÍPICAS

Dados de Extrusión para
Aleaciones Ligeras
Caliente
Camisas (Liners) para
Extrusión
Herramientas para Fundición
a Presión
Punzones y Matrices para
Prensar

Cuchillas para Corte en
Caliente
Moldes para Plástico
Insteros para Dados
Mandriles
Pernos Eyectores
Dados de Forja

COMPOSICIÓN QUÍMICA - % PROMEDIO

С	Si	Cr	Мо	V	
0.4	1.00	5.20	1.30	0.95	
NORMAC					

NORMAS

SAE / AISI	DIN	JIS	
H13	1.2344	SKD 61	

TRATAMIENTOS SUPERFICIALES

El Acero SISA H13 es apropiado para nitrurar y recubrir con PVD. Los procedimientos de recubrimiento con CVD, generalente rebasan la temperatura crítica y pueden resultar en cambios dimensionales impredecibles.

PROPIEDADES FÍSICAS

Módulo de Elasticidad30 psi x 10 6 (207 GPa)Densidad7750 kg/m³(0.280 lb/in³)

Conductividad Térmica

	cal/cm-s-°C	BTU/hr-ft-°F	W/m-°K
a 95°C (200°F)	0.062	15	26.0
a 315°C (600°F)	0.066	16	27.7

Coeficiente de Dilatación Térmica

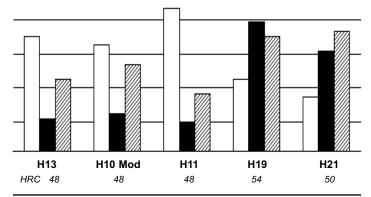
	mm/mm/°C	in/in/~F	
20-95°C / 70-200°F	11.0 x10 ⁻⁶	6.1 x10 ⁻⁶	
20-205°C / 70-400°F	11.5 x10 ⁻⁶	6.4 x10 ⁻⁶	
20-425°C / 70-800°F	12.2 x10 ⁻⁶	6.8 x10 ⁻⁶	
20-540°C / 70-1000°F	12.6 x10 ⁻⁶	7.0 x10 ⁻⁶	
20-650°C / 70-1200°F	13.1 x10 ⁻⁶	7.3 x10 ⁻⁶	

PROPIEDADES MECÁNICAS

La práctica de pre-calentar las herramientas en acero SISA H13 antes de ser expuestas a temperaturas elevadas durante el servicio, mejora considerablemente su tenacidad como se muestra en la siguiente tabla de resistencia al impacto con entalla Charpy en V:

EFECTO DE TEMPERATURAS ELEVADAS EN LA RESISTENCIA AL IMPACTO (TENACIDAD):

Dureza Original	Resistencia al Impacto Joules (ft-lbs.) Temperatura de Prueba Charpy con Entalla en V				
HRC a 21°C	21°C (70°F)	260°C (500°F)	540°C (1000°F)	565°C (1050°F)	595°C (1100°F)
52	14 (10)	30 (22)	34 (25)	34 (25)	
47	24 (18)	41 (30)	45 (33)	′	43 (32)
43	24 (18)	51 (38)	60 (44)		57 (42)


Templado a 1010°C (1850°F), enfriamiento al aire, doble revenido a la dureza indicada. Dureza original HRC a temperatura ambiente. Los especímenes de Charpy con entalla en V, subsecuentemente calentados a las temperaturas de prueba como se indica.

MAQUINABILIDAD Y RECTIFICABILIDAD

La maquinabilidad y rectificabilidad en estado recocido es aproximadamente un 70% de un acero tipo W1(1% C).

COMPARACIÓN DE ACEROS HERRAMIENTA

□ Tenacidad ■ Resistencia al Desgaste Ø Resistencia al Revenido

Nota: Las propiedades indicadas en esta hoja técnica son valores típicos. Variaciones normales en la química, tamaño y condiciones de tratamiento térmico pueden producir desviaciones de estos valores. Para datos adicionales o asistencia en ingeniería metalúrgica, favor de acudir al departamento técnico de SISA.

SISA H13

TRATAMIENTO TÉRMICO

Forjar

1100-950°C (2010-1740°F)

Recomendable precalentar 705-735°C (1300-1350°F)

No foriar por debajo de 900°C (1650°F), enfriamiento lento en horno o material termoaislante.

Recocer

Calentamiento a 870°C (1600°F), mantener 2 horas, enfriamiento lento 15°C (25°F) por hora hasta alcanzar 650°C (1200°F), posterior enfriamiento al aire.

Recocido alternativo - Calentamiento a 870°C (1600°F), mantener 2 horas, enfriamiento a 760°C (1400°F), mantener 6 horas, posterior enfriamiento al aire.

Dureza en Estado Recocido BHN 192/235

Relevado de Tensiones

Material Recocido 650-675°C (1200-1250°F) - Mantener 2 horas después de calentamiento al núcleo, enfriamiento lento en horno o al aire quieto.

Material Templado Calentar 15-25°C (25-50°F) por debajo de la temperatura de revenido, mantener 2 horas después de calentamiento al núcleo, enfriamiento lento en horno o al aire quieto.

Recomendable para reducir las tensiones causadas por un extenso maquinado en caso de herramientas de configuración complicada y para reducir las tensiones después de un proceso de electroerosión.

Enderezado

Preferible a 205-425°C (400-800°F)

TEMPLE

Precalentar

595-675°C (1100-1250°F) - Normalizar, posteriormente a 790-845°C (1450-1550°F) - Normalizar.

Temple (Austenización)

995-1025°C (1825-1875°F) - Mantener 30 a 45 minutos a temperatura. Utilizar las temperaturas altas del rango, provee mayor resistencia al revenido durante el trabajo pero con un leve decremento en tenacidad.

Enfriamiento

Al aire o enfriamiento con presión positiva (2 bar mínimo) o al aceite interrumpido por debajo de 65°C (150°F).

Se recomienda un rango mínimo de enfriamiento de aprox. 25°C (50°F) por minuto desde 980°C (1800°F) hasta bajar por debajo de 650°C (1200°F), para lograr máxima resistencia al impacto (tenacidad).

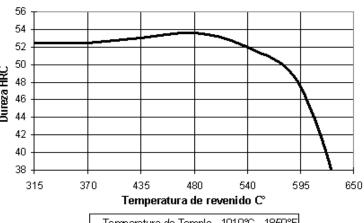
Revenir

175 - 315°C (350 - 600°F) - Doble revenido es necesario. Revenir por un mínimo de 2 horas por cada revenido (4 horas preferiblemente) o por lo menos 1 hora por cada pulgada (25 mm) de espesor para secciones arriba de 2" (50 mm) de espesor.

Enfriar a temperatura ambiente entre revenidos.

RESPUESTA AL TRATAMIENTO TÉRMICO **Dureza y Tenacidad al Impacto**

Temple a 1010°C (1850°F) Enfriamiento al Aire


Temperatura		Entalla Charpy C			
de Revenido	HRC	Ft. Ibs.	Joules		
540°C - (1000°F)	51-53	10	14		
565°C - (1050°F)	49-51	10	14		
595°C - (1100°F)	46-48	18	24		
605°C - (1125°F)	40-42	18	24		
620°C - (1150°F)	35-37				
650°C - (1200°F)	28-32				

Los resultados pueden variar dependiendo del método de temple y el tamaño de la pieza.

Cambio dimensional durante Tratamiento Térmico:

El promedio de cambio dimensional del acero SISA H13, con un tratamiento térmico normal es de aproximadamente +0.06% (=un crecimiento de 0.0006 pulg/pulg) al revenirse al rango de 540-620°C (1000-1150°F). Variaciones en el proceso de tratamiento térmico afectan los resultados.

DIAGRAMA DE REVENIDO

Temperatura de Temple - 1010°C - 1850°F|

ACEROS

Servicio Industrial, S.A. de C.V.

www.acerosisa.com.mx

Aceros Especiales Grados Herramienta y Maquinaria Aceros SISA-MET® de Metalurgia en Polvo (PM) Piezas Industriales Forjadas

Ciudad de México: Naranjos 6 - Col. San Francisco Cuautlalpan, Naucalpan - cp 53569, Estado de México Tel - (55) 5576-4011 Fax - (55) 5576-4997 sisa@sisa1.com.mx

> Monterrey: Guerrero Norte 4120 - Col. del Norte, Monterrey - cp 64500, Nuevo León Tel - (81) 8351-7220 Fax - (81) 8351-2981 sisamty@sisa1.com.mx